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• from
,

shortest path to East cost is 950 miles
.
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② In order to solve the problem for one initial

condition
,

We had to solve for all starting

statesmen tied cities
.

Thisprocedure i called Dynamic Programming
C DP )

I .

Hence computationally ( exponential complexity )

difficult .

② DP gives you a

" closed - loop - policy "/
' '

feedback policy "

€7 actions ( controls ) as f¥ of state

-

-

youre
' in now

[ If even I find myself  on Denver ,
then go South

.



③ Different from Open - loop policy C time - table ?

( close your eyes ,
drive 3 hours east

, them

take left turn )

⑨DP gives closed - loop policy .

-

⑤ DP proceeds Backward in time

( €7
" Backward Recursion

"

)

Solve for t days remaining
I

Them Ctf E) days remaining etc
.

⑥ Segments / subareas of optimal path

are themselves optimal
( ⇐ Bellmare Principle of Optimality )



⑦ Recursion
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To fix ideas

,

consider discrete time
.
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A feasible control ④is a sequence ofpolicies
.

Remember :

pohicyflamffeedbaca-A-etioycontrjpolieyf.law/ feedback :
. .
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•

Let T be the set of all possible

policies :

-uG=KEETH)-
-

• We wish to find the best I in T
.

.
: We need criterion to compare different

policies
we associate cost for each policy ,

and declare

the best one is the one that minimizes , .



• Our Cost function :
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• Finite horizon : g- sq
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Control law is a finite policy Sequence :
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,
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• The term Ck Can
,

In ) is called

immediate one period cost .



Fun plan : Stochastic
,

Dynamic Prog - amaury
✓

MDP ( Markov Decision Processes )
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Stochastic

Deterministic
DP is special one

:p÷E¥;e¥⇒
measurement

• Stochastic DP : noise
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, In are random vectors
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and hence JCI ) is a
random Variable
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To ones due sample path dependency
,

We take
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Let I
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We day
, Ian is optimal policy ,T* is

optimal Cost
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Newill now focus on : MDP
( Markov Decision Process )
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is allowed to depend on

preniousstates.ci
- e.) Ia is history -

dependent

policy .

Move generally
,

History upto time t  = : Ht
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At each ¥ fact u ) = In

(8u:Hn.

: I = ( Eo ,
I

, .
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, 8T
. , ) is called

history - dependent policy

> Ha is ho.st.my up until time U
.

History Dependent Policies
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Detour : Markov process :

IPC future I Past 4 Present )

=p ( Fata - e) Present )

Another Way to write :

p ( Past & Future I Present )

µPC Past I Present ) PC Future ) Past f Present )
Ip C past I Present ) PC future ) Present )

← ( '

.

'

Markov ) - - - . R)

f.
i IPCA ,

B) = (A) IPCBIA ) )
One way to think this

,

is to recall :

PCA & B) = PHD PCB )
two A & B are

independent .



So CA ) means :

" Past & future are conditionally independent
-

given the present
"

.

& can be taken
as alternative deft

of Markov process .

Discrete Time : Markov chain

:(
have states
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Eixample : 2statema-uouchac.in#
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Coming back to feedback policy :
-

Def : A feasible policy 8h is called
" Markarian "

or

" Markov Policy " if In
only depends on TheI In ( MDP )

( " action now
"

depends on

" state now
" )

set of Markov policies : Tm I I
all history

Intuition suggests : dependent

£. "

afoot::b 'd



Dynamic Programming 5017
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Define :

'

Nothing
random

here

Uefa
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C Even is
policies

are

-

randomized ,

there
is

nothing
handsome

about
this

minimization )


